352 research outputs found

    Compatible 4-Holes in Point Sets

    Full text link
    Counting interior-disjoint empty convex polygons in a point set is a typical Erd\H{o}s-Szekeres-type problem. We study this problem for 4-gons. Let PP be a set of nn points in the plane and in general position. A subset QQ of PP, with four points, is called a 44-hole in PP if QQ is in convex position and its convex hull does not contain any point of PP in its interior. Two 4-holes in PP are compatible if their interiors are disjoint. We show that PP contains at least ⌊5n/11⌋−1\lfloor 5n/11\rfloor {-} 1 pairwise compatible 4-holes. This improves the lower bound of 2⌊(n−2)/5⌋2\lfloor(n-2)/5\rfloor which is implied by a result of Sakai and Urrutia (2007).Comment: 17 page

    Higher-Order Triangular-Distance Delaunay Graphs: Graph-Theoretical Properties

    Full text link
    We consider an extension of the triangular-distance Delaunay graphs (TD-Delaunay) on a set PP of points in the plane. In TD-Delaunay, the convex distance is defined by a fixed-oriented equilateral triangle â–½\triangledown, and there is an edge between two points in PP if and only if there is an empty homothet of â–½\triangledown having the two points on its boundary. We consider higher-order triangular-distance Delaunay graphs, namely kk-TD, which contains an edge between two points if the interior of the homothet of â–½\triangledown having the two points on its boundary contains at most kk points of PP. We consider the connectivity, Hamiltonicity and perfect-matching admissibility of kk-TD. Finally we consider the problem of blocking the edges of kk-TD.Comment: 20 page

    Natural Law as Integrative Framework for Data Analytics Education

    Get PDF
    Teaching the multidisciplinary field of Data Analytics requires comfort with multiple domains of knowledge, each with its own assumptions, concepts, and skills. Ideally, such teaching will use an overarching framework that transcends and subsumes all the reference fields. Natural law provides such an unchanging framework and a stress-free and sustainable path to continued learning. Teaching from Natural Law helps enhance the student’s capacity for comprehension and integration of diverse knowledge and skills. This paper presents seven key Natural Law principles, along with examples of their applications in teaching data analytics

    Analysis of Farthest Point Sampling for Approximating Geodesics in a Graph

    Get PDF
    A standard way to approximate the distance between any two vertices pp and qq on a mesh is to compute, in the associated graph, a shortest path from pp to qq that goes through one of kk sources, which are well-chosen vertices. Precomputing the distance between each of the kk sources to all vertices of the graph yields an efficient computation of approximate distances between any two vertices. One standard method for choosing kk sources, which has been used extensively and successfully for isometry-invariant surface processing, is the so-called Farthest Point Sampling (FPS), which starts with a random vertex as the first source, and iteratively selects the farthest vertex from the already selected sources. In this paper, we analyze the stretch factor FFPS\mathcal{F}_{FPS} of approximate geodesics computed using FPS, which is the maximum, over all pairs of distinct vertices, of their approximated distance over their geodesic distance in the graph. We show that FFPS\mathcal{F}_{FPS} can be bounded in terms of the minimal value F∗\mathcal{F}^* of the stretch factor obtained using an optimal placement of kk sources as FFPS≤2re2F∗+2re2+8re+1\mathcal{F}_{FPS}\leq 2 r_e^2 \mathcal{F}^*+ 2 r_e^2 + 8 r_e + 1, where rer_e is the ratio of the lengths of the longest and the shortest edges of the graph. This provides some evidence explaining why farthest point sampling has been used successfully for isometry-invariant shape processing. Furthermore, we show that it is NP-complete to find kk sources that minimize the stretch factor.Comment: 13 pages, 4 figure
    • …
    corecore